2005 Paper 4 Question 6

Continuous Mathematics

(a) Let f(x) be a periodic function of period 2π . Give expressions for the Fourier coefficients a_r (r = 0, 1, ...) and b_r (r = 1, 2, ...) of f(x) where

$$\frac{a_0}{2} + \sum_{r=1}^{\infty} \left(a_r \cos rx + b_r \sin rx \right)$$

is the Fourier series representation of f(x). [2 marks]

(b) Show that the Fourier series in part (a) can also be written as a complex Fourier series

$$\sum_{r=-\infty}^{r=\infty} c_r e^{irx}$$

by deriving expressions for the complex Fourier coefficients c_r $(r = 0, \pm 1, \pm 2, ...)$ in terms of a_r and b_r . [3 marks]

(c) Use your expressions for a_r and b_r in part (a) and for c_r in part (b) to show that

$$c_r = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-irx} dx \qquad (r = 0, \pm 1, \pm 2, \ldots).$$

[3 marks]

- (d) Show that the complex Fourier coefficients of $f(x \alpha)$ (where α is a constant) are given by $e^{-ir\alpha}c_r$ ($r = 0, \pm 1, \pm 2, \ldots$). [6 marks]
- (e) Suppose that g(x) is another periodic function of period 2π with complex Fourier coefficients d_r $(r = 0, \pm 1, \pm 2, ...)$ and define h(x) by

$$h(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-y)g(y)dy.$$

Show that h(x) is a periodic function of period 2π and that its complex Fourier coefficients are given by $h_r = c_r d_r$ $(r = 0, \pm 1, \pm 2, ...)$. [6 marks]

[You may assume that the periodic functions in this question satisfy the Dirichlet conditions. Euler's equation may be used without proof but should be stated precisely.]