2005 Paper 2 Question 9

Regular Languages and Finite Automata

(a) Languages L_{1}, L_{2} over alphabets Σ_{1}, Σ_{2} are accepted by deterministic finite automata M_{1}, M_{2}. Show how to construct a deterministic finite automaton M from M_{1} and M_{2} that accepts the intersection $L_{1} \cap L_{2}$ of the two languages. What happens if M_{1} and M_{2} are non-deterministic?
(b) A context-free grammar has a set of terminals $\{0,1,-\}$, a set of non-terminals $\{N, P\}$, where N is the start symbol, and productions given by the following BNF.

$$
\begin{aligned}
N & ::=0|P|-P \\
P & ::=1|P 0| P 1
\end{aligned}
$$

(i) Give a deterministic finite automaton that accepts the language generated by this context-free grammar.
(ii) Give a regular expression that determines the same language. [1 mark]
(iii) What is meant by regular context-free grammars and what is their connection with regular languages? Is the context-free grammar given above regular?

