2005 Paper 1 Question 8

Discrete Mathematics

(a) (i) Define the terms injection, surjection and bijection.
(ii) Let A, B and C be sets. Define a bijection from $[(A \times B) \rightarrow C]$ to $[A \rightarrow(B \rightarrow C)]$. Define its inverse.
(b) Prove that
(i) if A and B are countable sets, then their product $A \times B$ is also countable; [2 marks]
(ii) if A and B are countable sets, then their union $A \cup B$ is countable;
(iii) the powerset of the natural numbers $\mathcal{P}(\mathbb{N})$ is uncountable;
(iv) the set of finite subsets of \mathbb{N} is countable.
[You may assume that a set B is countable iff there is an injection from B into \mathbb{N}.]
(c) Explain why assuming that the collection $\{x \mid x$ is a set $\}$ is a set would lead to a contradiction.
(d) By considering the set $B=\mathbb{R} \cup\{b\}$, where $b \notin \mathbb{R}$, define a well-founded relation \prec on B such that $\{x \in B \mid x \prec b\}$ is uncountable.

