2005 Paper 1 Question 8

Discrete Mathematics

- (a) (i) Define the terms *injection*, *surjection* and *bijection*. [2 marks]
 - (*ii*) Let A, B and C be sets. Define a bijection from $[(A \times B) \to C]$ to $[A \to (B \to C)]$. Define its inverse. [2 marks]
- (b) Prove that
 - (i) if A and B are countable sets, then their product $A \times B$ is also countable; [2 marks]
 - (*ii*) if A and B are countable sets, then their union $A \cup B$ is countable; [2 marks]

(*iii*) the powerset of the natural numbers $\mathcal{P}(\mathbb{N})$ is uncountable; [5 marks]

(iv) the set of finite subsets of \mathbb{N} is countable. [2 marks]

[You may assume that a set B is countable iff there is an injection from B into \mathbb{N} .]

- (c) Explain why assuming that the collection $\{x \mid x \text{ is a set}\}$ is a set would lead to a contradiction. [3 marks]
- (d) By considering the set $B = \mathbb{R} \cup \{b\}$, where $b \notin \mathbb{R}$, define a well-founded relation \prec on B such that $\{x \in B \mid x \prec b\}$ is uncountable. [2 marks]