2005 Paper 1 Question 2

Discrete Mathematics

(a) State the Fermat-Euler theorem, and deduce that $p \mid\left(2^{p}-2\right)$ for any prime p. [5 marks]
(b) A composite number m that satisfies $m \mid\left(2^{m}-2\right)$ is known as a pseudo-prime. Show that $2^{10} \equiv 1(\bmod 11)$ and $2^{10} \equiv 1(\bmod 31)$. Deduce that 341 is a pseudo-prime.
[5 marks]

