2005 Paper 12 Question 6

Compiler Construction

(a) Explain how a parse tree representing an expression can (i) be converted
into stack-oriented intermediate code and then (iz) be translated into simple
machine code for a register-oriented architecture (e.g. ARM or TA32) on
an instruction-by-instruction basis. Also indicate how this code might be
improved to remove push—pop pairs introduced by (7). Your answer need
only consider expression forms encountered in the expression:

h(a, g(b), c) * 3 +d
[12 marks]

(b) In Java, expressions are evaluated strictly left-to-right. Consider compiling
the function f in the following Java class definition:

class A

{
static int a,b;
void £() { ... <<C>> ... }
int g(int x) { ... at+; ... }

};

Indicate what both the intermediate code and (improved as above) target code
might be for <<C>> for the cases where <<C>> is:

(i) b=g(7) + a;
(i) b = a + g(7);
(711) b = (-g(7)) + aj
(iv) b = a - g(7);

Comment on any inherent differences in efficiency at both the intermediate
code and target code levels.

[8 marks]



