Data Structures and Algorithms

(a) Explain how a Boolean matrix can be used to represent the edges of a finite directed graph whose vertices are numbered 1 to n.
(b) Describe Warshall's algorithm to convert the matrix representing a graph to one that represents its transitive closure, and carefully explain why the algorithm works.
(c) Outline Floyd's algorithm, without proof of correctness, to find the cost of the cheapest path between any two vertices of a directed graph where the edges carry non-negative costs.
(d) It is required to construct a matrix R that encodes a path with the minimum number of edges from any vertex i to any other vertex j. $R_{i j}$ will be zero if no path exists from vertex i to vertex j; otherwise, $R_{i j}$ will hold the vertex number of the next vertex of a minimal path from i to j. Suggest an algorithm to compute R from a given Boolean matrix M.

