2005 Paper 11 Question 9

Mathematics for Computation Theory

(a) Let M be an n-state deterministic finite automaton over the finite alphabet S. Write $l(w)$ for the length of words $w \in S^{*}$. Suppose that M accepts the word $x \in S^{*}$, where $l(x) \geqslant n$.
(i) Show that x is a concatenation of words $u v w$, where $l(u v) \leqslant n, l(v) \geqslant 1$, and M accepts the word $z_{k}=u v^{k} w$ for all natural numbers $k \geqslant 0$.
(ii) Hence show that if M accepts some word $y \in S^{*}$, it must accept some word $z \in S^{*}$ such that $l(z)<n$; and that M accepts an infinite set of words if and only if it accepts some word $x \in S^{*}$ such that $n \leqslant l(x)<2 n$.
(b) Let $S=\{a, b\}$ be an alphabet of two symbols. Explain whether each of the following languages over S is regular:
(i) $L_{1}=\left\{u v \mid u, v \in S^{*}, \quad l(v)=2 . l(u)\right\}$
(ii) $L_{2}=\left\{w w \mid w \in S^{*}\right\}$
[4 marks]

