2005 Paper 11 Question 8

Numerical Analysis I

(a) Define absolute error and relative error. How are these related? Explain briefly the term loss of significance.
(b) An algorithm is required for solution of $a x^{2}+b x+c=0$ where $b>0$. Describe how loss of significance can occur in the formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

and derive an alternative formula for such a case. Illustrate your answer by applying it to the case $a=30, b=3000, c=1$ on a decimal machine with only 5 significant digits available. [You should assume for the purposes of calculation that $\sqrt{b^{2}-4 a c}$ evaluates to $b-(2 a c / b)$, correctly rounded.]
[10 marks]
(c) The series

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots
$$

is to be summed by taking terms in order, left to right, using only p decimal digits of precision until additional terms are negligible. If $x=6$ find the largest term of the series and hence, assuming $\cos 6 \simeq 1$, estimate roughly how many decimal digits of accuracy will be lost in the process.
[7 marks]

