Continuous Mathematics

(a) Let $f(x)$ be a periodic function of period 2π. Give expressions for the Fourier coefficients $a_{r}(r=0,1, \ldots)$ and $b_{r}(r=1,2, \ldots)$ of $f(x)$ where

$$
\frac{a_{0}}{2}+\sum_{r=1}^{\infty}\left(a_{r} \cos r x+b_{r} \sin r x\right)
$$

is the Fourier series representation of $f(x)$.
(b) Show that the Fourier series in part (a) can also be written as a complex Fourier series

$$
\sum_{r=-\infty}^{r=\infty} c_{r} e^{i r x}
$$

by deriving expressions for the complex Fourier coefficients $c_{r} \quad(r=$ $0, \pm 1, \pm 2, \ldots)$ in terms of a_{r} and b_{r}.
[3 marks]
(c) Use your expressions for a_{r} and b_{r} in part (a) and for c_{r} in part (b) to show that

$$
c_{r}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i r x} d x \quad(r=0, \pm 1, \pm 2, \ldots) .
$$

(d) Show that the complex Fourier coefficients of $f(x-\alpha)$ (where α is a constant) are given by $e^{-i r \alpha} c_{r}(r=0, \pm 1, \pm 2, \ldots)$.
(e) Suppose that $g(x)$ is another periodic function of period 2π with complex Fourier coefficients $d_{r}(r=0, \pm 1, \pm 2, \ldots)$ and define $h(x)$ by

$$
h(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x-y) g(y) d y
$$

Show that $h(x)$ is a periodic function of period 2π and that its complex Fourier coefficients are given by $h_{r}=c_{r} d_{r}(r=0, \pm 1, \pm 2, \ldots)$.
[You may assume that the periodic functions in this question satisfy the Dirichlet conditions. Euler's equation may be used without proof but should be stated precisely.]

