2005 Paper 10 Question 8

Mathematics for Computation Theory

State the requirements for (S, \leq) to be:

- (a) a partially ordered set;
- (b) a totally ordered set;
- (c) a well ordered set.

[5 marks]

Let (\mathbb{N}, \leq) be the natural numbers under the standard ordering. Define the *product* ordering \leq_p on $(\mathbb{N} \times \mathbb{N})$ that is derived from this ordering. Which of conditions (a), (b), (c) does \leq_p satisfy? [3 marks]

Let (S, \leq) and (T, \prec) be partially ordered sets, and $f : (S, \leq) \to (T, \prec)$ be a function. What condition must be satisfied in order that f be *monotonic*?

[2 marks]

If f is a bijection, and both f and f^{-1} are monotonic, we say that $(S, \leq), (T, \prec)$ are *isomorphic* partially ordered sets.

Suppose that (S, \leq) is a partially ordered set. A topological sort of (S, \leq) is defined by specifying a total ordering \sqsubseteq on S such that the identity map $\iota : (S, \leq) \to (S, \sqsubseteq)$ is monotonic.

Define two different topological sorts of $(\mathbb{N} \times \mathbb{N}, \leq_p)$, one of which is isomorphic to \mathbb{N} with the standard ordering, while the other is not. Justify your claims. [10 marks]