Introduction to Security

(a) A and B play a simple game. A chooses a number $R_{A} \in \mathbb{Z}_{3}$ and B chooses a number $R_{B} \in \mathbb{Z}_{3}$. Then A and B communicate their respective choice to each other simultaneously, meaning that the players cannot change their choice after having seen that of the opponent. These rules decide who wins the game:

$$
\begin{aligned}
& R_{A} \equiv R_{B}+1 \quad(\bmod 3) \quad \Rightarrow \quad A \text { wins } \\
& R_{B} \equiv R_{A}+1 \quad(\bmod 3) \quad \Rightarrow \quad B \text { wins }
\end{aligned}
$$

In any other case, the result of the game is a draw.
(i) What complication arises when this game is played at a distance, for example via e-mail?
(ii) Suggest a cryptographic protocol that prevents cheating when this game is played via e-mail. Your solution should not rely on a trusted third party.
(iii) What assumptions do you make about the cryptographic functions used in your solution of part (ii)?
(iv) What assumptions do you make about the amount of computing power available to the opponent in your solution of part (ii)?
(b) Outline briefly the purpose of an organisation's security policy and what steps should be considered in its development.

