2005 Paper 10 Question 1

Digital Electronics

(a) What is a minimum sum-of-products?

[3 marks]

- (b) A full adder has data inputs (A_0, B_0) and a carry input (C_0) . The sum (S_0) and carry (C_1) are output. What are the minimum sum-of-products equations for S_0 and C_1 ? [6 marks]
- (c) How could the gate count for the implementation of output S_0 be reduced using XOR gates? [2 marks]
- (d) For a 3-bit full adder (i.e. one which has three A inputs (A_0, A_1, A_2) , three B inputs (B_0, B_1, B_2) and three sum outputs (S_0, S_1, S_2)), the final carry output is C_3 . What is the sum-of-products equation for C_3 in terms of the A and B inputs? [6 marks]
- (e) If we were to implement an 8-bit full adder, why would we look for a multi-level logic implementation for the carry output (C_8) ? [3 marks]