## Digital Electronics

(a) What is a minimum sum-of-products?
(b) A full adder has data inputs $\left(A_{0}, B_{0}\right)$ and a carry input $\left(C_{0}\right)$. The sum $\left(S_{0}\right)$ and carry $\left(C_{1}\right)$ are output. What are the minimum sum-of-products equations for $S_{0}$ and $C_{1}$ ?
(c) How could the gate count for the implementation of output $S_{0}$ be reduced using XOR gates?
[2 marks]
(d) For a 3 -bit full adder (i.e. one which has three A inputs $\left(A_{0}, A_{1}, A_{2}\right)$, three B inputs $\left(B_{0}, B_{1}, B_{2}\right)$ and three sum outputs $\left(S_{0}, S_{1}, S_{2}\right)$ ), the final carry output is $C_{3}$. What is the sum-of-products equation for $C_{3}$ in terms of the A and B inputs?
(e) If we were to implement an 8-bit full adder, why would we look for a multi-level logic implementation for the carry output $\left(C_{8}\right)$ ?

