2004 Paper 8 Question 12

Numerical Analysis II

(a) State a recurrence formula for the sequence of Chebyshev polynomials, $\left\{T_{k}(x)\right\}$, and list these as far as $T_{5}(x)$.
(b) What is the best L_{∞} polynomial approximation over $[-1,1]$ to x^{k} using polynomials of lower degree, and what is its degree? Use this property to explain the method of economisation of a Taylor series. How can the error in one economisation step be estimated?
(c) It is required to approximate the function $f(x)=\lim _{k \rightarrow \infty} P_{k}(x)$ over $[-1,1]$ with an absolute accuracy of 2 decimal places, where

$$
P_{k}(x)=\sum_{n=1}^{k} \frac{x^{n}}{n n!} .
$$

As this series converges faster than e^{x}, a good estimate of the error $\left\|f(x)-P_{k}(x)\right\|_{\infty}$ in the truncated Taylor series is given by evaluating the next term

$$
\frac{x^{k+1}}{(k+1)(k+1)!}
$$

at $x=1$. Use the method of economisation to find a polynomial approximation of the required accuracy.

