2004 Paper 7 Question 9

Quantum Computing

(a) You are given a qubit that is in one of two states: either $|\phi\rangle=|0\rangle$ or $|\psi\rangle=\cos \theta|0\rangle+\sin \theta|1\rangle$. If you measure the qubit in the computational basis, what is the probability that your measurement correctly identifies the state?
(b) Draw a labelled schematic circuit diagram for:
(i) the phase estimation algorithm;
(ii) Grover's algorithm.
(c) Suppose a search problem has an unknown number M of marked states. Show how phase estimation and Grover's algorithm can be combined to estimate M to a high accuracy using $O(\sqrt{N})$ oracle calls. [Hint: The Grover iterate, G, has eigenvalues $e^{ \pm i \theta}$ where $\sin ^{2}(\theta / 2)=M / N$.]
(d) Suppose there is an algorithm which can determine the number M of marked states in an unsorted search space of size N using only $O(\log (N))$ oracle calls. Explain why this would allow us to solve NP-complete problems in polynomial time.

