
2004 Paper 6 Question 10

Foundations of Functional Programming

Continuation passing allows lambda calculus and functional languages to describe
many forms of sequential control structure. If you write code in your answer to this
question you may write it either in lambda-calculus or in an equivalent ML-like
syntax, but in the latter case you must not rely on ML’s order of evaluation.

(a) Using the continuation passing style, show how to model the following impure
code without use of ref or := but so that the exact sequence of values that k
takes during a calculation still arise.

val k = ref 0;

fun c(n, r) = (

k := !k + r;

if r=0 orelse r=n then 1

else c(n-1,r-1) + c(n-1,r));

You may suppose that conditions and basic arithmetic are available to you as
existing primitives, so if, orelse and + can all appear in your answer, even
though !, := and the use of ; that indicates sequential execution must not.

[14 marks]

(b) Discuss how exception-handling mechanisms such as ML’s raise and handle

can be mapped onto uses of continuations. Construct a small example to
illustrate your explanation. [6 marks]

All code you write will be expected to be annotated so that it is easy for a human
reader to see what it sets out to achieve: clarity of exposition will be considered
much more important than exact syntactic validity in any particular programming
language’s syntax.

1


