2004 Paper 5 Question 9

Logic and Proof

In this question x, y, z are variables, and a, b, c are constants.
(a) Briefly outline the semantics of first order logic.
(b) Use the semantics of first order logic to justify that the set of formulae

$$
\{\forall x(x=c), P(a), \neg P(b)\}
$$

is unsatisfiable.
(c) For each of the following first order logic formulae: either prove it to be valid using the sequent calculus; or give an interpretation that makes it false.

$$
\begin{aligned}
& {[\forall x(\exists y(R(x, y)))] \rightarrow \exists x(R(x, x))} \\
& \quad[\exists x(\neg P(x))] \rightarrow \neg \exists x(P(x)) \\
& \quad[\neg \exists x(P(x))] \rightarrow \exists x(\neg P(x)) \\
& \quad \exists x(P(x) \rightarrow P(a) \wedge P(b))
\end{aligned}
$$

(d) Consider the following set Γ of first order logic formulae:

$$
\left\{\begin{array}{l}
\forall x(\neg R(x, x)), \quad \forall x y z(R(x, y) \wedge R(y, z) \rightarrow R(x, z)), \\
R(a, b), \quad \forall x y(R(x, y) \rightarrow \exists z(R(x, z) \wedge R(z, y)))
\end{array}\right\}
$$

(i) Find an interpretation that satisfies Γ.
(ii) Can Γ be satisfied by an interpretation with a finite domain? Briefly justify your answer.

