2004 Paper 5 Question 12

Complexity Theory

Recall that a simple path in a graph is a path with no repeated nodes. Consider the following two decision problems:

- Given a graph $G=(V, E)$, a positive integer k, source $s \in V$ and a target $t \in V$, is there a simple path from s to t of length at least k ?
- Given a graph $G=(V, E)$, a positive integer k, source $s \in V$ and a target $t \in V$, is there a simple path from s to t of length at most k ?

One of these problems is known to be in P while the other one is known to be NP-complete.
(a) Which of the two problems is in P and which is NP-complete?
(b) Describe a polynomial time algorithm for the problem that is in P. [6 marks]
(c) Give a proof of NP-completeness for the problem that is NP-complete. You may assume the NP-completeness of any problem, such as Hamiltonian Cycle, mentioned in the lecture course.

