## 2004 Paper 3 Question 2

## ECAD

Consider the following mysterious Verilog module.

```
module mystery(c,r,a,s);
input c,r,a;
output [2:0] s;
reg [2:0] s;
always @(posedge c or posedge r)
    if(r)
        s<=0;
        else begin
            if(a && (s<7)) s<=s+1;
            else if(!a && (s>0)) s<=s-1;
        end
endmodule
```

(a) How many flip-flops will be required to implement the mystery module, and how will signals c and r be connected to these flip-flops?
(b) What is the state transition diagram for this mystery module?
(c) If this module were synthesised to the minimum sum of products form, what would the equations be for next state bits s [0], s [1] and s [2]? [10 marks]

