2004 Paper 2 Question 2

Digital Electronics

The functionality of a 2 -to- 4 line decoder is presented in the table below.

inputs				outputs			
A1	A0	EN	S3	S2	S1	S0	
X	X	0	0	0	0	0	
0	0	1	0	0	0	1	
0	1	1	0	0	1	0	
1	0	1	0	1	0	0	
1	1	1	1	0	0	0	

(a) What are the minimum sum-of-products equations for each output of the 2-to-4 line decoder?
(b) How can five 2-to-4 line decoders be used to produce a 4 -to-16 line decoder? Illustrate your answer using a circuit diagram.
(c) An LED is to be controlled via a CMOS inverter. When the input to the inverter is 1 , the LED should illuminate. The on current should not exceed 20 mA at which point the voltage drop across the LED will be 1.5 V . What circuit should be used to control the LED? Please include resistor values.
[4 marks]
(d) You have been asked to design the output interface for a novelty clock which represents time using just 12 LEDs. The LEDs are arranged in a circle to represent the hours on an analogue clock. You have been provided with a time-keeping component which produces a 2 Hz signal and two 4 bit outputs H and M representing hours and minutes, where

$$
\begin{aligned}
\mathrm{H} & =\mathrm{h} \bmod 12 \\
\mathrm{M} & =\mathrm{m} \text { div } 5 \\
\mathrm{~h} & =\text { hours (in the range } 1 \text { to } 12 \text {) } \\
\mathrm{m} & =\text { minutes (in the range } 0 \text { to } 59 \text {) }
\end{aligned}
$$

The LED which represents the minute is to flash at 1 Hz whereas the hour LED does not flash. If the same LED is being used for both the hour and minute, it should flash. Produce a circuit diagram which meets this specification, making good use of the 4 -to- 16 decoder parts.
[6 marks]

