2004 Paper 1 Question 7

Discrete Mathematics

Recall the Fibonacci numbers defined by:

- $f_{0}=0$
- $f_{1}=1$
- $f_{n}=f_{n-1}+f_{n-2}$ for $n>1$

Using induction on n, or otherwise, show that $f_{m+n}=f_{m-1} f_{n}+f_{m} f_{n+1}$ for $m>0$.

Deduce that $\forall m, n>0 . m\left|n \Rightarrow f_{m}\right| f_{n}$.
Deduce further that $\forall n>4 . f_{n}$ prime $\Rightarrow n$ prime.
Given $n \in \mathbb{N}$, let $g_{i}=f_{i} \bmod n$, and consider the pairs $\left(g_{1}, g_{2}\right)$, $\left(g_{2}, g_{3}\right), \ldots,\left(g_{i}, g_{i+1}\right), \ldots$. Show that there must be a repetition in the first $n^{2}+1$ pairs. Let $r<s$ be the least values with $\left(g_{r}, g_{r+1}\right)=\left(g_{s}, g_{s+1}\right)$. Show that $g_{r-1}=g_{s-1}$, and deduce that $r=1$. Calculate g_{1} and g_{2}, and deduce that $g_{s-1}=0$. Hence show that one of the first n^{2} Fibonacci numbers is divisible by n. [10 marks]

