2004 Paper 13 Question 9

Numerical Analysis II

(a) A Riemann integral over $[a, b]$ is defined by

$$
\int_{a}^{b} f(x) d x=\lim _{\substack{n \rightarrow \infty \\ \Delta \xi \rightarrow 0}} \sum_{i=1}^{n}\left(\xi_{i}-\xi_{i-1}\right) f\left(x_{i}\right) .
$$

Explain the terms Riemann sum and mesh norm.
(b) Consider the quadrature rule

$$
Q f=\frac{3 h}{8}[f(a)+3 f(a+h)+3 f(a+2 h)+f(a+3 h)]-\frac{3 f^{(4)}(\lambda) h^{5}}{80} .
$$

If $[a, b]=[-1,1]$ find $\xi_{0}, \xi_{1}, \ldots, \xi_{4}$ and hence show that this is a Riemann sum.
(c) Suppose R is a rule that integrates constants exactly over $[-1,1]$, and that $f(x)$ is bounded and Riemann-integrable over $[a, b]$. Write down a formula for the composite rule $(n \times R) f$ and prove that

$$
\lim _{n \rightarrow \infty}(n \times R) f=\int_{a}^{b} f(x) d x \quad[6 \text { marks }]
$$

(d) What is the formula for $(n \times Q) f$ over $[a, b]$?
(e) Which polynomials are integrated exactly by $Q f$? Which monomials are integrated exactly by the product rule $(Q \times Q) F$ when applied to a function of x and y ?

