2004 Paper 11 Question 9

Mathematics for Computation Theory

(a) Prove Arden's Rule for events, that $X=A^{*} B$ is the least solution of the inequality $X \geqslant B+A X$.
(b) Let $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ be a (2×2) event matrix. Show that the matrix

$$
Y=\left(\begin{array}{cc}
\left(A+B D^{*} C\right)^{*} & A^{*} B\left(D+C A^{*} B\right)^{*} \\
D^{*} C\left(A+B D^{*} C\right)^{*} & \left(D+C A^{*} B\right)^{*}
\end{array}\right)
$$

satisfies the equation $Y=I+M Y$.
(c) The deterministic finite automaton M has a 2-symbol alphabet $\{a, b\}$, and a single accepting state α, the initial state. The transition diagram is as follows:

Show that the event accepted by M can be denoted by the regular expression

$$
\left[a^{*} b\left(a a^{*} b\right)^{*} b\right]^{*}
$$

