2004 Paper 11 Question 10

Computation Theory

(a) Explain what is meant by the following statements:
(i) $f: \mathbb{N} \rightarrow \mathbb{N}$ is a total recursive (TR) function;
(ii) the sequence $\left\{f_{n}: \mathbb{N} \rightarrow \mathbb{N}\right\}_{n \in \mathbb{N}}$ of TR functions of a single variable is recursively enumerable.
(b) Show that no recursive enumeration can include the set of all TR functions of a single variable.
(c) Suppose $u(n, x)$ is a recursive enumeration of the sequence of TR functions $f_{n}(x)=u(n, x)$. Show how to define a sequence $\left\{g_{n}: \mathbb{N} \rightarrow \mathbb{N}\right\}$ of TR functions of a single variable such that each g_{n} is distinct from every function f_{n}, and also from each g_{k} for $k \neq n$.
(d) Express the sequence $\left\{g_{n}\right\}$ as an explicit recursive enumeration $v(n, x)=g_{n}(x)$.

