2004 Paper 10 Question 8

Mathematics for Computation Theory

Let A, B, C be sets. Define the *Cartesian product* $(A \times B)$ and the *disjoint union* (A+B). [3 marks]

Let $f \subseteq (A \times B), g \subseteq (B \times C)$ be relations between A and B, B and C respectively. Define the *inverse relation* f^{-1} between B and A and the *product relation* $(f \circ g)$ between A and C. [3 marks]

What conditions must be satisfied for the relation f to be a function $f : A \to B$? [2 marks]

Write $(A \to B)$ for the set of all functions from A to B. If A, B are both *finite*, |A| = a, |B| = b, how many elements are there in $(A \times B), (A + B), (A \to B)$? [2 marks]

If f and f^{-1} are both functions, we say that f is a *bijection*, and we write $A \cong B$. If A, B are both finite and $f: A \to B$ is a bijection, prove that a = b. (*) [2 marks]

Establish explicit bijections between the following pairs of sets:

(a) $A \to (B \times C),$ $(A \to B) \times (A \to C);$ [3 marks]

(b)
$$(A+B) \to C$$
, $(A \to C) \times (B \to C)$. [4 marks]

If A, B, C are all finite, verify that the cardinality condition (\star) above is satisfied in each case. [1 mark]