Mathematics for Computation Theory

Let A, B, C be sets. Define the Cartesian product $(A \times B)$ and the disjoint union $(A+B)$.

Let $f \subseteq(A \times B), g \subseteq(B \times C)$ be relations between A and B, B and C respectively. Define the inverse relation f^{-1} between B and A and the product relation $(f \circ g)$ between A and C.

What conditions must be satisfied for the relation f to be a function $f: A \rightarrow B$?

Write $(A \rightarrow B)$ for the set of all functions from A to B. If A, B are both finite, $|A|=a,|B|=b$, how many elements are there in $(A \times B),(A+B),(A \rightarrow B)$?

If f and f^{-1} are both functions, we say that f is a bijection, and we write $A \cong B$. If A, B are both finite and $f: A \rightarrow B$ is a bijection, prove that $a=b$. (\star) [2 marks] Establish explicit bijections between the following pairs of sets:
(a) $A \rightarrow(B \times C), \quad(A \rightarrow B) \times(A \rightarrow C)$;
(b) $(A+B) \rightarrow C, \quad(A \rightarrow C) \times(B \rightarrow C)$.
[4 marks]

If A, B, C are all finite, verify that the cardinality condition (\star) above is satisfied in each case.

