
2003 Paper 9 Question 7

Optimising Compilers

(a) Summarise briefly the principles of strictness analysis, including descriptions
of:

(i) the space of values used for analysis-time representation of a k-argument,
1-result function in the source language;

(ii) how a built-in function is given an abstract meaning;

(iii) how a recursive user-defined function is given an abstract meaning (it is
acceptable to do this part by example);

(iv) the machine-level benefit of the associated optimisation.
[8 marks]

(b) A problem amenable to similar treatment is that of escape analysis. Here we
have a call-by-value language with cons and the question to be answered is
“whether a value containing a cons-node passed as argument to a function may
be returned (‘escape’) as part of the function’s result”.

(i) Choose (and state clearly) an appropriate set of abstract values and
abstractions of functions to formalise the problem of escape analysis for
a simple first-order language with integers and simple integer lists (but
not lists of lists). Also give abstract interpretations of if-then-else, +,
cons, hd and tl.
[Hint: to manage this system without using static types, you might best
assume that nil is treated as 0, and that any type-error (dynamically
detected) such as cons(1,nil)+3, tl(3) and even (because of the ‘no-
lists-of-lists’ rule) cons(cons(1,nil),nil) gives result 0.] [8 marks]

(ii) Give without proof abstract meanings (resulting from your system) of the
following functions:

f(x,y,z) = cons(hd(tl(x)), if hd(x) then y else tl(z))

g(x,y) = if x=0 then 0 else cons(hd x, g(tl x, y))

h(x,y) = if x=0 then x else cons(hd x, h(tl x, y))

k(x,y) = if x=0 then y else cons(hd x, k(tl x, y))

[4 marks]

1


