2003 Paper 9 Question 11

Numerical Analysis II

(a) Explain the term positive semi-definite matrix.

[1 mark]

(b) Let **A** and **B** be $n \times n$ matrices and let **x** be a vector of n elements. State Schwarz's inequality for each of the products **AB** and **Ax**. What are the singular values of **A**, and how are they related to the ℓ_2 norm of **A**?

[4 marks]

- (c) Describe briefly the singular value decomposition $\mathbf{A} = \mathbf{U}\mathbf{W}\mathbf{V}^T$, and how it may be used to solve the linear equations $\mathbf{A}\mathbf{x} = \mathbf{b}$. [4 marks]
- (d) Let $\hat{\mathbf{x}}$ be an approximate solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$ and write $\mathbf{r} = \mathbf{b} \mathbf{A}\hat{\mathbf{x}}$, $\mathbf{e} = \mathbf{x} \hat{\mathbf{x}}$. Find an expression for an upper bound on the relative error $\|\mathbf{e}\| / \|\mathbf{x}\|$ in terms of computable quantities. Show how this formula may be computed using the singular values of \mathbf{A} . [8 marks]
- (e) Suppose **A** is a 5×5 matrix and its singular values are 10^3 , 1, 10^{-14} , 10^{-18} , 10^{-30} . If machine epsilon $\simeq 10^{-15}$ then choose a suitable rank for an approximate solution and form the generalised inverse \mathbf{W}^+ . [3 marks]