Types

- (a) Give the axioms and rules for inductively generating ML typing judgements $\Gamma \vdash M : \tau$, where Γ is a finite function from type variables to type schemes and M ranges over expressions built up from variables using only function abstraction $(\lambda x(M))$, function application $(M_1 M_2)$ and local declarations (let $x = M_1$ in M_2). As part of your answer you should explain what it means for a type scheme to generalise a type. [7 marks]
- (b) Consider the fixpoint combinator Y, which is defined to be the expression $\lambda x((\lambda y(x(y y))) \lambda y(x(y y)))$. State, with justification, whether there is a type τ for which $\emptyset \vdash Y : \tau$ is provable from the axioms and rules in part (a). [6 marks]
- (c) Consider adding to the ML type system a 'universal' type ω together with the axiom

(univ)
$$\Gamma \vdash M : \omega$$

asserting that any expression M has type ω . In this augmented type system show that $x : \omega \to \alpha \vdash \lambda y(x(y y)) : (\omega \to \omega) \to \alpha$ is provable, where α is any type variable. [3 marks]

Deduce that $\emptyset \vdash Y : (\omega \to \alpha) \to \alpha$ is also provable, where Y is the expression in part (b). [4 marks]