2003 Paper 7 Question 5

Computer Systems Modelling

Let N(t) denote the number of events in the time interval [0, t] for a (homogeneous) Poisson process of rate λ , $(\lambda > 0)$.

- (a) State the necessary properties on N(t) that define a (homogeneous) Poisson process of rate λ . [4 marks]
- (b) By dividing the interval [0, t] into equal length sub-intervals show that N(t) is a Poisson random variable with mean λt . [4 marks]
- (c) Let X_1 denote the time of the first event and for n > 1 let X_n denote the elapsed time between the (n-1)th and the *n*th events of the Poisson process. Determine the distribution of X_1 and the joint distribution of X_1 and X_2 . [4 marks]
- (d) Let $S_n = \sum_{i=1}^n X_i$ denote the time of the *n*th event. Derive the probability density function of the random variable $S_n(t)$. [4 marks]
- (e) Give an algorithm to generate the first T time units of a (homogeneous) Poisson process of rate λ . [4 marks]