## 2003 Paper 6 Question 7

## Artificial Intelligence I

A simple game works as follows. We have a board divided into $n$ by $m$ square cells. We also have an unlimited number of L-shaped tiles, each made to cover exactly three squares. The tiles can appear in any of the four possible orientations. Our aim is to cover the board completely with non-overlapping tiles.
(a) A single tile on the board can be described using a list such as $[[1,1],[1,2],[2,1]]$ containing three tuples, specifying the position of each part of the tile on the board. Consider the following Prolog predicate, which is true if the six variables describe a correct, L-shaped tile.

```
tile([[A,B],[C,D],[E,F]]) :- C is A+1, D is B, E is A, F is B-1;
    C is A+1, D is B, E is A, F is B+1;
    C is A-1, D is B, E is A, F is B+1;
    C is A-1, D is B, E is A, F is B-1.
```

Explain what happens in response to a query of the form
tile ([[4, 5], [B, C], [D, E] ]).
Keep in mind the effects of backtracking.
(b) Write a Prolog predicate goodplace ([ [A, B] , [C, D] , [E, F] ], [ $N, M]$ ) that is true if $[[A, B],[C, D],[E, F]]$ is a validly shaped tile and all of its parts lie within an $N$ by M board. Your predicate should behave under backtracking in such a way that the response to a query of the form

```
goodplace([[10,4], [B,C],[D,E]],[10,10]).
```

is to find the unspecified values for all tiles which have a valid shape and fall within the board. In this example there would be two such tiles. [6 marks]
(c) Write a Prolog predicate tiling(Available, Solution, Size). Here, Size is the size of the board represented as above, Solution is a list of tiles that solves the problem, and Available is a list of available positions on a board of the given size. For example, if Size is [2,2] then Available is $[[1,1],[1,2],[2,1],[2,2]]$.

Your predicate should be true if the Solution given is a valid one, and should be capable of finding a valid Solution in response to a query such as
tiling([[1, 1], [1, 2], ..., [10, 10]], X, [10, 10]).
Full marks will only be given for predicates that can exploit backtracking to find all possible solutions.
[12 marks]

