2003 Paper 5 Question 12

Complexity Theory

If $A \subseteq \Sigma_{1}^{*}$ and $B \subseteq \Sigma_{2}^{*}$ are two languages over the alphabets Σ_{1} and Σ_{2} respectively, we write $A \leq_{P} B$ to denote that A is polynomial-time reducible to B.
(a) Give a precise definition of \leq_{P}
(b) Is the relation \leq_{P} on languages:
(i) reflexive?
(ii) symmetric?
(iii) transitive?

Give a proof for your answer in each case.
(c) If Σ is an alphabet, show that if $\mathrm{P}=\mathrm{NP}$ then every language $L \subseteq \Sigma^{*}$ in NP is NP-complete except \emptyset and Σ^{*}. Why are these two exceptions not NP-complete?

