2003 Paper 2 Question 9

Regular Languages and Finite Automata

(a) Let L be the set of all strings over the alphabet $\{a, b\}$ that end in a and do not contain the substring $b b$. Describe a deterministic finite automaton whose language of accepted strings is L. Justify your answer.
(b) Explain what is meant by a regular expression \mathbf{r} over an alphabet Σ and by the language $L(\mathbf{r})$ determined by \mathbf{r}.

If a regular expression \mathbf{r} does not contain any occurrence of the symbol \emptyset, is it possible for $L(\mathbf{r})$ to be empty?

Explain why it is always possible, given a regular expression \mathbf{r} over Σ, to find a regular expression $\sim \mathbf{r}$ with the property that $L(\sim \mathbf{r})$ is the set of all strings over Σ that are not in $L(\mathbf{r})$. Any standard results you use should be carefully stated, but need not be proved.

