2003 Paper 2 Question 5

Probability

(a) If a continuous probability density function (p.d.f.) $f(x)$ is transformed by some transformation function $y(x)$ into a new p.d.f. $g(y)$, then:

$$
g(y)=f(x(y))\left|\frac{d x}{d y}\right|
$$

What constraints are there on the function $y(x)$ and its inverse $x(y)$? What is the significance of the vertical bars round $\frac{d x}{d y}$?
(b) Suppose that X is a continuous random variable distributed Uniform(0,1). Its p.d.f. $f(x)$ is given by:

$$
f(x)= \begin{cases}1, & \text { if } 0 \leqslant x<1 \\ 0, & \text { otherwise }\end{cases}
$$

What four transformation functions are required to transform $f(x)$ into the following:
(i)

$$
g(y)= \begin{cases}\lambda \cdot e^{-\lambda y}, & \text { if } y>0 \\ 0, & \text { otherwise }\end{cases}
$$

(ii)

$$
g(y)= \begin{cases}\sin y, & \text { if } 0 \leqslant y<\frac{\pi}{2} \\ 0, & \text { otherwise }\end{cases}
$$

(iii)

$$
g(y)= \begin{cases}\frac{1}{2}(2-y), & \text { if } 0 \leqslant y<2 \\ 0, & \text { otherwise }\end{cases}
$$

(iv)

$$
g(y)= \begin{cases}\frac{3}{8}(2-y)^{2}, & \text { if } 0 \leqslant y<2 \\ 0, & \text { otherwise }\end{cases}
$$

