2003 Paper 2 Question 3

Digital Electronics

(a) Design a 2-bit multiplier for unsigned integers which takes input $x_{1} x_{0}$ representing the unsigned integer $X, y_{1} y_{0}$ representing the unsigned integer Y, and produces the output $z_{3} z_{2} z_{1} z_{0}$ representing the unsigned integer Z.
[4 marks]
(b) How can multipliers designed in part (a) be cascaded (with adders) to provide a four-bit multiplier?
[4 marks]
(c) Design a sequential 8-bit multiplier. You can assume that a 16 -bit adder has been provided. The finite state control can be described by a state diagram.
(d) Outline the design of a sequential divider which can divide 16 -bit unsigned integers by 8 -bit unsigned integers.
[4 marks]

