Discrete Mathematics

- (a) Define the terms *injective*, *surjective* and *bijective*, and state the Schröder-Bernstein theorem concerning the existence of a bijection between two sets.
 [4 marks]
- (b) What is a countable set? [2 marks]
- (c) Prove the following assertions:
 - (i) If C is a countable set and $f: A \to C$ is an injection, then A is countable. [2 marks]
 - (*ii*) If A and B are countable sets, then $A \times B$ is countable. [2 marks]
 - (*iii*) \mathbb{Z} and \mathbb{Q} , the sets of integer and rational numbers, are both countable. [4 marks]
 - (*iv*) $\mathcal{P}(\mathbb{N})$, the set of all subsets of the natural numbers, is not countable. [2 marks]
 - (v) If U is an uncountable set and $f: U \to V$ is an injection, then V is not countable. [2 marks]
 - $(vi) \mathbb{R}$, the set of real numbers, is not countable. [2 marks]