2003 Paper 1 Question 7

Discrete Mathematics

(a) Prove that there are infinitely many prime numbers.
(b) Let $p_{1}, p_{2}, \ldots, p_{k}$ be the first k primes. Show that the number of positive integers less than n and having no prime factors other than $p_{1}, p_{2}, \ldots, p_{k}$ is less than $\sqrt{n} 2^{k}$.
[Hint: All such numbers are of the form $m^{2} p_{1}^{\varepsilon_{1}} p_{2}^{\varepsilon_{2}} \cdots p_{k}^{\varepsilon_{k}}$ where each ε_{i} is 0 or 1.]

Deduce that the $k^{\text {th }}$ prime is less than 4^{k}.
(c) State the inclusion-exclusion principle and use it to determine the number of prime numbers less than 100 .

