2003 Paper 13 Question 9

Numerical Analysis II

(a) Explain the term positive semi-definite matrix.
(b) Let \mathbf{A} and \mathbf{B} be $n \times n$ matrices and let \mathbf{x} be a vector of n elements. State Schwarz's inequality for each of the products $\mathbf{A B}$ and $\mathbf{A x}$. What are the singular values of \mathbf{A}, and how are they related to the ℓ_{2} norm of \mathbf{A} ?
[4 marks]
(c) Describe briefly the singular value decomposition $\mathbf{A}=\mathbf{U W} \mathbf{V}^{T}$, and how it may be used to solve the linear equations $\mathbf{A x}=\mathbf{b}$.
[4 marks]
(d) Let $\hat{\mathbf{x}}$ be an approximate solution of $\mathbf{A x}=\mathbf{b}$ and write $\mathbf{r}=\mathbf{b}-\mathbf{A} \hat{\mathbf{x}}, \mathbf{e}=\mathbf{x}-\hat{\mathbf{x}}$. Find an expression for an upper bound on the relative error $\|\mathbf{e}\| /\|\mathbf{x}\|$ in terms of computable quantities. Show how this formula may be computed using the singular values of \mathbf{A}.
(e) Suppose \mathbf{A} is a 5×5 matrix and its singular values are $10^{3}, 1,10^{-14}$, $10^{-18}, 10^{-30}$. If machine epsilon $\simeq 10^{-15}$ then choose a suitable rank for an approximate solution and form the generalised inverse \mathbf{W}^{+}. [3 marks]

