2003 Paper 12 Question 9

Numerical Analysis II

(a) Let n_{+}be the number of positive real roots of a polynomial $p_{n}(x)$. Let c be the number of changes of sign when the coefficients are taken in order. State Descartes' rule of signs.
(b) If $p_{3}(x)=x^{3}+13 x^{2}+54 x+72$ what does the rule say about the polynomials $p_{3}(x), p_{3}(-x)$?
(c) Using Descartes' rule, a simple search technique and factorisation, find all the real and complex roots of

$$
q_{5}(x)=x^{5}+5 x^{4}+32 x^{3}+160 x^{2}+256 x+1280 .
$$

(d) The Newton-Raphson formula $\tilde{x}=x-f(x) / f^{\prime}(x)$ can often be used to find real roots of a polynomial. However, a user of numerical software reports failure to find an accurate root of

$$
f(x)=3 x^{4}-28 x^{3}+24 x^{2}+144 x+432
$$

for $x>3$ using Newton-Raphson. The user has tried different starting values but gets either a floating-point exception or failure to converge. Using Descartes' rule on $f(x)$ and $f^{\prime}(x)$ investigate the cause of these numerical problems.
[9 marks]

