2003 Paper 11 Question 9

Mathematics for Computation Theory

Let L, L^{\prime} be languages (events) over finite alphabets S, S^{\prime}. Define the concatenation $L L^{\prime}$ of the languages L and L^{\prime}.

What are the other regular operators on languages over finite alphabets? [You do not need to give a detailed definition.] Explain what is meant by a regular language L over a finite alphabet S.

What is meant by a non-deterministic finite automaton (NDFA) over a finite alphabet S ? Given such an NDFA M, let ι be the initial state, and A be the set of accepting states. Define the language L accepted by M (equivalently, the event E recognised by M).
[4 marks]
Show how to define a deterministic finite automaton (DFA) \bar{M} that also accepts L.

Suppose that languages L, L^{\prime} over alphabets S, S^{\prime} are accepted by DFA M, M^{\prime}. Construct an NDFA M_{c} that accepts their concatenation $L L^{\prime}$.

Let L be a regular language over a finite alphabet S. Outline the proof that L is accepted by some DFA M. [You may assume results equivalent to $(*)$ for the other regular operators.]

