2003 Paper 10 Question 8

Mathematics for Computation Theory

Let A be a non-empty set. Define the *identity relation* Δ_A on A. [1 mark]

A *pre-order* on A is a relation R on A such that

(i) $\forall a \in A, (a, a) \in R;$

(*ii*) $(a,b) \in R, (b,c) \in R \Rightarrow (a,c) \in R.$

Using a similar notation, specify additional conditions:

(*iii*), that must be satisfied in order that R be a partial order on A;

(*iv*), that in addition to (*iii*) must be satisfied in order that R be a total order on A. [2 marks]

Express conditions (i)-(iv) in terms of relations only (i.e. without reference to elements of A). [3 marks]

Suppose R is a pre-order on A. Let

$$S = \{(a,b) \mid (a,b) \in R \quad and \quad (b,a) \in R\}.$$

Show that S is an equivalence relation on A.

Let $\frac{A}{S}$ be the set of S-equivalence classes. Write [a] for $\{x \in A \mid (a, x) \in S\}$.

Define relation \leq on $\frac{A}{S}$ as follows:

$$[a] \leq [b]$$
 iff $(a,b) \in R$.

Show that $\frac{A}{S}$ is partially ordered by \leq .

Let Z be the set of integers. Define the relation R on Z as follows:

$$\{(x,y)\in Z\times Z\mid \exists \ q\in Z \ s.t. \ y=xq\}.$$

Show that R is a pre-order on Z but *not* a partial order. Describe the derived partially ordered set $(\frac{Z}{S}, \leq)$. [4 marks]

What are the maximal and minimal elements in $(\frac{Z}{S}, \leq)$? [2 marks]

[4 marks]

[4 marks]