Mathematics for Computation Theory

Let A be a non-empty set. Define the identity relation Δ_{A} on A.
A pre-order on A is a relation R on A such that
(i) $\forall a \in A,(a, a) \in R$;
(ii) $(a, b) \in R,(b, c) \in R \Rightarrow(a, c) \in R$.

Using a similar notation, specify additional conditions:
(iii), that must be satisfied in order that R be a partial order on A;
(iv), that in addition to (iii) must be satisfied in order that R be a total order on A.

Express conditions $(i)-(i v)$ in terms of relations only (i.e. without reference to elements of A).

Suppose R is a pre-order on A. Let

$$
S=\{(a, b) \mid(a, b) \in R \quad \text { and } \quad(b, a) \in R\} .
$$

Show that S is an equivalence relation on A.
Let $\frac{A}{S}$ be the set of S-equivalence classes. Write $[a]$ for $\{x \in A \mid(a, x) \in S\}$.
Define relation \leqslant on $\frac{A}{S}$ as follows:

$$
[a] \leqslant[b] \quad \text { iff } \quad(a, b) \in R .
$$

Show that $\frac{A}{S}$ is partially ordered by \leqslant.
Let Z be the set of integers. Define the relation R on Z as follows:

$$
\{(x, y) \in Z \times Z \mid \exists q \in Z \text { s.t. } y=x q\} .
$$

Show that R is a pre-order on Z but not a partial order. Describe the derived partially ordered set $\left(\frac{Z}{S}, \leqslant\right)$.

What are the maximal and minimal elements in $\left(\frac{Z}{S}, \leqslant\right)$?

