2002 Paper 6 Question 9

Semantics of Programming Languages

A call-by-value evaluation relation for λ -terms that are closed (i.e. ones without free variables) is inductively defined by the axiom

(1)
$$\lambda x. M \Downarrow \lambda x. M$$

and the rule

(2)
$$\frac{M_1 \Downarrow V_1 \quad M_2 \Downarrow V_2 \quad M[V_2/x] \Downarrow V}{(M_1 M_2) \Downarrow V} \text{ if } V_1 = \lambda x. M$$

where V_1, V_2, V range over closed λ -abstractions and $M[V_2/x]$ denotes the result of substituting V_2 for all free occurrences of the variable x in the λ -term M. A call-by-value *applicative simulation* is a binary relation S between closed λ -terms satisfying that whenever $M_1 S M_2$ and $M_1 \Downarrow V_1$, then for some V_2 it is the case that $M_2 \Downarrow V_2$ and $(V_1 V) S (V_2 V)$ for all V. Write $M_1 \leq M_2$ to mean that $M_1 S M_2$ holds for some such S.

(a) Give a closed λ -term Ω with the property that $\Omega \Downarrow V$ holds for no V.

[4 marks]

- (b) Deduce that $\Omega \leq M$, for all M. [2 marks]
- (c) Show that $M \leq M$, for all M. [2 marks]
- (d) Show that $M[V/x] \leq (\lambda x. M)V$, for all M, V, x. [6 marks]
- (e) Is it always the case that $M[N/x] \leq (\lambda x. M)N$ holds when N is not a λ -abstraction? [Hint: consider the case when $N = \Omega$ and M is a suitable λ -term not containing x free.] [6 marks]