2002 Paper 4 Question 5

Continuous Mathematics

Suppose that $F(\mu)$ is the Fourier transform of the function f(x).

- (a) State the integral expression for $F(\mu)$ in terms of f(x) and the inverse transform for f(x) in terms of $F(\mu)$. [2 marks]
- (b) Determine the *shift rule* for the Fourier transform of $f(x \alpha)$ where α is a constant. [3 marks]
- (c) Determine the scale rule for the Fourier transform of $f(\alpha x)$ where α is a nonzero constant. [3 marks]
- (d) Given that the standard normal density function $\frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ has Fourier transform $F(\mu)$ use the scale and shift rules to determine the Fourier transform of the normal density $\frac{1}{\sqrt{2\pi\sigma}}e^{-(x-\gamma)^2/(2\sigma^2)}$. Here γ is a real number and σ is a positive real number. [6 marks]
- (e) Show that

$$G(\mu) = A \int_{-\infty}^{\infty} g(x) e^{-ia\mu x} \, dx$$

implies that

$$g(x) = \frac{|a|}{2\pi A} \int_{-\infty}^{\infty} G(\mu) e^{ia\mu x} \, d\mu$$

for all non-zero constants a and A. You may assume that the result holds in the special case when a = 1 and $A^{-1} = 2\pi$. [6 marks]