2002 Paper 4 Question 5

Continuous Mathematics

Suppose that $F(\mu)$ is the Fourier transform of the function $f(x)$.
(a) State the integral expression for $F(\mu)$ in terms of $f(x)$ and the inverse transform for $f(x)$ in terms of $F(\mu)$.
(b) Determine the shift rule for the Fourier transform of $f(x-\alpha)$ where α is a constant.
(c) Determine the scale rule for the Fourier transform of $f(\alpha x)$ where α is a nonzero constant.
(d) Given that the standard normal density function $\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$ has Fourier transform $F(\mu)$ use the scale and shift rules to determine the Fourier transform of the normal density $\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\gamma)^{2} /\left(2 \sigma^{2}\right)}$. Here γ is a real number and σ is a positive real number.
(e) Show that

$$
G(\mu)=A \int_{-\infty}^{\infty} g(x) e^{-i a \mu x} d x
$$

implies that

$$
g(x)=\frac{|a|}{2 \pi A} \int_{-\infty}^{\infty} G(\mu) e^{i a \mu x} d \mu
$$

for all non-zero constants a and A. You may assume that the result holds in the special case when $a=1$ and $A^{-1}=2 \pi$.

