2002 Paper 2 Question 2

Digital Electronics

- (a) Find a minimal sum of products form for each of the following partially specified boolean functions. Each partially specified function, g_i , is specified by a function f_i which is true when g_i must be true and d_i which is true when g_i may be true or false (that is, d_i represents the "don't cares").
 - (i) $f_1 = y x \overline{w} + x y z + \overline{y} \overline{x} \overline{z} w + x w z$ $d_1 = \overline{x} z$ [4 marks]
 - (ii) $f_2 = y \overline{w} \overline{z} + \overline{w} \overline{x} \overline{z} + \overline{y} \overline{w} \overline{z}$ $d_2 = \overline{x} w \overline{z}$ [4 marks]
- (b) What is the maximum number of product terms in a minimal sum of products form of a function of n boolean variables? [2 marks]
- (c) How do "don't cares" arise in practice and how may they be exploited? Are there any pitfalls in using them? Illustrate your answer with examples.

 [10 marks]