2002 Paper 1 Question 8

Discrete Mathematics

Let Ω be a set. Write $\mathcal{P}(\Omega)$ for its powerset. Recall the definition of the intersection of $\mathcal{B} \subseteq \mathcal{P}(\Omega)$:

$$\bigcap_{B \in \mathcal{B}} B = \{ x \in \Omega \mid \forall B \in \mathcal{B}. \ x \in B \} .$$

(a) Let $\mathcal{B} \subseteq \mathcal{P}(\Omega)$ and $\mathcal{C} \subseteq \mathcal{P}(\Omega)$.

(i) Prove that

$$\left(\bigcap_{B\in\mathcal{B}}B\right)\cup\left(\bigcap_{C\in\mathcal{C}}C\right) \subseteq \bigcap_{(B,C)\in\mathcal{B}\times\mathcal{C}}(B\cup C).$$

[3 marks]

$$\bigcap_{(B,C)\in\mathcal{B}\times\mathcal{C}} (B\cup C) \subseteq (\bigcap_{B\in\mathcal{B}} B) \cup (\bigcap_{C\in\mathcal{C}} C) .$$

[6 marks]

(b) Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$. Suppose that \mathcal{A} is *intersection-closed* in the sense that

if
$$\mathcal{B} \subseteq \mathcal{A}$$
, then $\bigcap_{B \in \mathcal{B}} B \in \mathcal{A}$.

Define

$$\mathcal{R} = \{ (X, y) \in \mathcal{P}(\Omega) \times \Omega \mid \forall A \in \mathcal{A}. \ X \subseteq A \Rightarrow y \in A \} .$$

Let $C \subseteq \Omega$. Say C is *R*-closed iff

$$\forall (X, y) \in \mathcal{R}. \ X \subseteq C \Rightarrow y \in C \ .$$

You are asked to show that the members of \mathcal{A} are precisely the \mathcal{R} -closed subsets of Ω , in the following two stages:

(i) Show

if
$$C \in \mathcal{A}$$
, then C is \mathcal{R} -closed.

[2 marks]

(ii) Show

if C is
$$\mathcal{R}$$
-closed, then $C \in \mathcal{A}$.

[Hint: Consider the set
$$\mathcal{B} = \{A \in \mathcal{A} \mid C \subseteq A\}$$
.] [9 marks]