2002 Paper 1 Question 8

Discrete Mathematics

Let Ω be a set. Write $\mathcal{P}(\Omega)$ for its powerset. Recall the definition of the intersection of $\mathcal{B} \subseteq \mathcal{P}(\Omega)$:

$$
\bigcap_{B \in \mathcal{B}} B=\{x \in \Omega \mid \forall B \in \mathcal{B} . x \in B\} .
$$

(a) Let $\mathcal{B} \subseteq \mathcal{P}(\Omega)$ and $\mathcal{C} \subseteq \mathcal{P}(\Omega)$.
(i) Prove that

$$
\left(\bigcap_{B \in \mathcal{B}} B\right) \cup\left(\bigcap_{C \in \mathcal{C}} C\right) \subseteq \bigcap_{(B, C) \in \mathcal{B} \times \mathcal{C}}(B \cup C) .
$$

(ii) Prove that

$$
\bigcap_{(B, C) \in \mathcal{B} \times \mathcal{C}}(B \cup C) \subseteq\left(\bigcap_{B \in \mathcal{B}} B\right) \cup\left(\bigcap_{C \in \mathcal{C}} C\right) .
$$

(b) Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$. Suppose that \mathcal{A} is intersection-closed in the sense that

$$
\text { if } \mathcal{B} \subseteq \mathcal{A} \text {, then } \bigcap_{B \in \mathcal{B}} B \in \mathcal{A} .
$$

Define

$$
\mathcal{R}=\{(X, y) \in \mathcal{P}(\Omega) \times \Omega \mid \forall A \in \mathcal{A} . X \subseteq A \Rightarrow y \in A\}
$$

Let $C \subseteq \Omega$. Say C is \mathcal{R}-closed iff

$$
\forall(X, y) \in \mathcal{R} . X \subseteq C \Rightarrow y \in C .
$$

You are asked to show that the members of \mathcal{A} are precisely the \mathcal{R}-closed subsets of Ω, in the following two stages:
(i) Show

$$
\text { if } C \in \mathcal{A} \text {, then } C \text { is } \mathcal{R} \text {-closed . }
$$

(ii) Show

$$
\text { if } C \text { is } \mathcal{R} \text {-closed, then } C \in \mathcal{A} \text {. }
$$

[Hint: Consider the set $\mathcal{B}=\{A \in \mathcal{A} \mid C \subseteq A\}$.]

