2002 Paper 1 Question 7

Discrete Mathematics

State Fermat's Little Theorem and derive the Diffie-Hellman protocol for key exchange.
[6 marks]
The protocol requires repeated multiplication $(\bmod p)$, for some prime p, to achieve exponentiation. A procedure which avoids the potentially slow division by p after each multiplication to calculate the remainder is known as Montgomery multiplication ...

Given an odd prime p, let B be a power of 2 with $B>p$. Define $m(x) \equiv x B(\bmod p)$. Prove that:

- $m: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is a bijection;
- $m(x \times y)=m^{-1}(m(x) \times m(y))$.

Given $u<p B$, let $v \equiv-u p^{-1}(\bmod B)$ and $x=(u+v p) \div B$. If $x \geqslant p$, then subtract p from x. Prove that:

- x is an integer;
- $x \equiv u B^{-1}(\bmod p)$;
- $x<p$.

Deduce that $x=m^{-1}(u)$, observing that its calculation involves division only by B.
[2 marks]

