2002 Paper 13 Question 7

Prolog for Artificial Intelligence

A simple D-type flip-flop is represented by the Prolog predicate dff whose definition is as follows:

```
dff(D, 0, Q, Q).
dff(D, 1, Q, D).
```

The first argument is the input to the flip-flop, the second is the clock with 0 representing a falling edge and 1 representing a rising edge. The third and fourth arguments are the previous and next states of the flip-flop. As can be seen the state of the flip-flop changes on a rising edge of the clock.

A clocked circuit consists of three d-type flip-flops with inputs and states $\left(D_{1}, Q_{1}\right)$, $\left(D_{2}, Q_{2}\right)$ and $\left(D_{3}, Q_{3}\right)$. They are wired in such a way that

$$
\begin{aligned}
& D_{1}=\left(Q_{1} \wedge Q_{2}\right) \vee\left(\overline{Q_{1}} \wedge \overline{Q_{2}}\right) \\
& D_{2}=\left(\overline{Q_{1}} \wedge Q_{3}\right) \vee\left(Q_{2} \wedge \overline{Q_{3}}\right) \\
& D_{3}=\left(Q_{1} \wedge Q_{3}\right) \vee\left(\overline{Q_{2}} \wedge \overline{Q_{3}}\right)
\end{aligned}
$$

(a) Using s(Q1, Q2, Q3) to represent the state of the circuit, define a predicate that will compute the state after the next rising edge of the clock. You may find it helpful to define predicates to represent and, or and not gates.
[14 marks]
(b) Define a predicate testcc (N, s(Q1, Q2, Q3), List) that will compute the list of states (List) through which the circuit passes from the given initial state $\mathrm{s}(\mathrm{Q} 1, \mathrm{Q} 2, \mathrm{Q} 3)$ as a result of a sequence of N rising edges of the clock. [6 marks]

