2002 Paper 12 Question 9

Numerical Analysis II

- (a) In the Chebyshev characterisation theorem, the best L_{∞} approximation to f(x) over a closed finite interval by a polynomial $p_{n-1}(x)$ of degree n-1 has the property that the maximum error |e(x)| is attained at M distinct points ξ_j such that $e(\xi_j) = -e(\xi_{j-1})$. What is M? [2 marks]
- (b) Let $x = m \times 2^k$ represent a normalised number in a floating-point implementation. When computing \sqrt{x} show how the domain of the problem can be reduced to $x \in [1, 4)$. Find the coefficients a, b which minimise $||e(x)||_{\infty}$ over [1, 4] where $e(x) = ax + b \sqrt{x}$. [8 marks]
- (c) Taking full account of symmetry, describe the form of the best polynomial approximation p(x) to x^4 over [-1, 1] by a polynomial of lower degree. Sketch x^4 and p(x), showing the extreme values of |e(x)| where $e(x) = x^4 p(x)$. Hence compute the coefficients of p(x). [10 marks]