2002 Paper 12 Question 9

Numerical Analysis II

(a) In the Chebyshev characterisation theorem, the best L_{∞} approximation to $f(x)$ over a closed finite interval by a polynomial $p_{n-1}(x)$ of degree $n-1$ has the property that the maximum error $|e(x)|$ is attained at M distinct points ξ_{j} such that $e\left(\xi_{j}\right)=-e\left(\xi_{j-1}\right)$. What is M ?
(b) Let $x=m \times 2^{k}$ represent a normalised number in a floating-point implementation. When computing \sqrt{x} show how the domain of the problem can be reduced to $x \in[1,4)$. Find the coefficients a, b which minimise $\|e(x)\|_{\infty}$ over $[1,4]$ where $e(x)=a x+b-\sqrt{x}$.
(c) Taking full account of symmetry, describe the form of the best polynomial approximation $p(x)$ to x^{4} over $[-1,1]$ by a polynomial of lower degree. Sketch x^{4} and $p(x)$, showing the extreme values of $|e(x)|$ where $e(x)=x^{4}-p(x)$. Hence compute the coefficients of $p(x)$.

