2002 Paper 11 Question 1

Digital Electronics

(a) Find a minimal sum of products form for each of the following partially specified boolean functions. Each partially specified function, g_{i}, is specified by a function f_{i} which is true when g_{i} must be true and d_{i} which is true when g_{i} may be true or false (that is, d_{i} represents the "don't cares").
(i) $f_{1}=y x \bar{w}+x y z+\bar{y} \bar{x} \bar{z} w+x w z$

$$
d_{1}=\bar{x} z
$$

(ii) $f_{2}=y \bar{w} \bar{z}+\bar{w} \bar{x} \bar{z}+\bar{y} \bar{w} \bar{z}$

$$
d_{2}=\bar{x} w \bar{z}
$$

(b) What is the maximum number of product terms in a minimal sum of products form of a function of n boolean variables?
(c) How do "don't cares" arise in practice and how may they be exploited? Are there any pitfalls in using them? Illustrate your answer with examples.

