2002 Paper 10 Question 8

Continuous Mathematics

Consider the trigonometric series

$$
\frac{a_{0}}{2}+\sum_{r=1}^{\infty}\left(a_{r} \cos r x+b_{r} \sin r x\right)
$$

where $a_{0}, a_{1}, a_{2}, \ldots$ and b_{1}, b_{2}, \ldots are constants and suppose that $f(x)$ is a periodic function of x with period 2π.
(a) State expressions for the constants $a_{0}, a_{r}, b_{r}(r=1,2, \ldots)$ so that the trigonometric series forms the Fourier series of $f(x)$ over the interval $-\pi<x \leqslant \pi$. Such expressions are then known as the Fourier coefficients of $f(x)$.
(b) State the Dirichlet conditions on the function $f(x)$ for it to be represented by its Fourier series at all points in the interval $-\pi<x \leqslant \pi$ at which the function $f(x)$ is continuous.
(c) Determine simplified expressions for the Fourier coefficients when the function $f(x)$ is an even function of x.
(d) Consider the function $f(x)$ which is periodic with period 2π and is defined by $f(x)=x^{2}$ in the interval $-\pi<x \leqslant \pi$. Does the function $f(x)$ satisfy the Dirichlet conditions? Briefly justify your answer.
(e) Determine the Fourier series for this function $f(x)$.
(f) By substituting a suitable value for x in the Fourier series show that

$$
\frac{\pi^{2}}{12}=\sum_{r=1}^{\infty} \frac{(-1)^{r+1}}{r^{2}}
$$

