Introduction to Security

- Explain the collision resistance requirement for the hash function used in (a) (i)a digital signature scheme. [4 marks]
 - (ii) Show how the DES block cipher can be used to build a 64-bit hash function. Is the result collision resistant? [4 marks]
- (b) A sequence of plaintext blocks P_1, \ldots, P_8 is encrypted using DES into a sequence of ciphertext blocks. Where an IV is used, it is numbered C_0 . Owing to a transmission error, one bit in ciphertext block C_3 changes its value, and as a consequence, the receiver obtains after decryption a corrupted plaintext block sequence P'_1, \ldots, P'_8 . For the following modes of operation, how many bits do you expect to be wrong in each block P'_i ?

(<i>i</i>) Cipher block chaining.	[2 marks]
-------------------------------------	------------

- (*ii*) 64-bit output feedback. [2 marks]
- (c) (i)Explain the *Feistel principle* used by block ciphers such as DES and its purpose. [4 marks]
 - (*ii*) Using a given pseudo-random function $F: \{0,1\}^{100} \to \{0,1\}^{100}$, construct a pseudo-random permutation $P: \{0,1\}^{300} \to \{0,1\}^{300}$ by extending the Feistel principle appropriately. [4 marks]