## Foundations of Functional Programming

(a) Write a pure lambda-expression that will act as a fixed-point operator Y such that the identity $Y f=f(Y f)$ will hold.
[6 marks]
(b) Write pure lambda-expressions that define functions P, A and D such that A $(P \times y)=x$ and $D(P \times y)=y$. Observe that $P$ can be thought of as creating a 2-tuple and A and D then act as selectors that can retrieve the two components.
(c) Using the two above lambda-expressions it is possible to express mutual recursion between two functions, say $f$ and $g$. This can be done by using $Y$ to help find the value of ( $P f g$ ) the tuple whose elements are $f$ and $g$. Using the artificial and rather silly example [the example will never terminate since it has no stopping condition!]

$$
\left.\begin{array}{rl}
f \mathrm{x} & =\mathrm{g}(\mathrm{f}(\mathrm{~g} x)) \\
\text { AND } \mathrm{g} & =\mathrm{g}(\mathrm{f}
\end{array}\right)
$$

show how to construct a pure lambda expression that would evaluate
(f g)

